Find Min and Max Values in a Binary Search Tree
Find Min and Max both Iteratively and Recursively
- If you think about it, the Min value in a Binary tree is going to be the farthest left node while the Max value is going to be the farthest right node.
Heres the code:
#include<iostream>
using std::cout;
using std::endl;
using std::cin;
struct Node {
int data;
struct Node *left;
struct Node *right;
};
//Function to visit nodes in Inorder and print
void Inorder(Node *root) {
if(root == NULL)
{
return;
}
Inorder(root->left); // Visit left subtree
cout << root->data << endl; // Print data
Inorder(root->right); // Visit right subtree
}
// Function to Insert Node in a Binary Search Tree
Node* Insert(Node *root,int data) {
// Return pointer which is a memory address
if(root == NULL) {
root = new Node();
root->data = data;
root->left = root->right = NULL;
}
else if(data <= root->data)
{
root->left = Insert(root->left,data);
}
else
{
root->right = Insert(root->right,data);
}
return root; // Return Root Address
}
bool Search(Node* root, int data)
{
if (root == NULL )
{
return false;
}
else if ( root->data == data)
{
return true;
}
else if (data <= root->data)
{
return Search(root->left, data);
}
else return Search(root->right, data);
}
int FindMin(Node* root)
{
// Iteratively
if (root == NULL)
{
cout << "Error: Tree is Empty\n";
return -1;
}
while (root->left != NULL){
root = root->left;
}
return root->data;
}
int FindMax(Node* root)
{
// Iteratively
if (root == NULL)
{
cout << "Error: Tree is Empty\n";
return -1;
}
while (root->right != NULL){
root = root->right;
}
return root->data;
}
int FindMinRec(Node* root)
{ if (root == NULL)
{ cout << "Error: Tree is Empty\n";
return -1;
}
else if (root->left == NULL){
return root->data;
}
return FindMinRec(root->left);
}
int FindMaxRec(Node* root)
{
if (root == NULL)
{
cout << "Error: Tree is Empty\n";
return -1;
}
else if (root->right == NULL){
return root->data;
}
return FindMaxRec(root->right);
}
int main() {
Node* root = NULL;
root = Insert(root,15);
root = Insert(root,10);
root = Insert(root,20);
root = Insert(root,25);
root = Insert(root,8);
root = Insert(root,12);
cout << "Inorder Traversal: " << endl;
Inorder(root);
int number;
cout << "Enter a number to be searched?\n";
cin >> number;
if (Search(root, number) == true)
{
cout << "Found!\n";
}
else{
cout << "Not Found\n";
}
cout << "Lets find the Min of our Binary Tree: ";
cout << FindMin(root) << endl;
cout << "Lets find the Min of our Binary Tree Recursively: ";
cout << FindMinRec(root) << endl;
cout << "Lets find the Max of our Binary Tree: ";
cout << FindMax(root) << endl;
cout << "Find Max of our Binary Tree Recursively: " << FindMaxRec(root) << endl;
}
Output
Inorder Traversal:
8
10
12
15
20
25
Enter a number to be searched?
12
Found!
Lets find the Min of our Binary Tree: 8
Lets find the Min of our Binary Tree Recursively: 8
Lets find the Max of our Binary Tree: 25
Find Max of our Binary Tree Recursively: 25